01/08/2016

Idée reçue #17: "L'effacement des ouvrages hydrauliques permet de s'adapter au changement climatique"

Depuis quelques mois, un nouvel élément de langage circule dans le milieu des gestionnaires de rivière : effacer les ouvrages est indispensable pour lutter contre les effets de réchauffement climatique. Après l'entrave à auto-épuration chimique, gadget de communication qui résiste mal à l'épreuve de l'examen scientifique, les ouvrages de moulins, d'étangs et d'usines à eau seraient maintenant responsables d'une aggravation du changement climatique. Quand on veut tuer son chien, on l'accuse d'avoir la rage… Mais cette nouvelle idée reçue n'a pas grand chose de solide pour appuyer ses assertions. L'effacement des ouvrages hydrauliques présente un mauvais bilan CO2, alors que leur équipement en énergie hydro-électrique limite au contraire l'effet de serre. La conservation d'outil de régulation des niveaux de la rivière peut se révéler précieuse avec les crues et étiages plus sévères du climat changeant. L'ouvrage hydraulique est donc auxiliaire de notre adaptation au changement climatique! Quant aux poissons d'eau froide et en particulier aux salmonidés – dont la préservation au service des intérêts particuliers du loisir pêche est un non-dit de l'opaque réforme de continuité écologique –, leur aire de répartition risque de toute façon de se réduire à certaines têtes de bassin. Il n'est nul besoin de tout casser pour les y conserver.





Avant de s'adapter, prévenir : l'intérêt de la production hydro-électrique - La première réponse à la menace du changement climatique, c'est de limiter au maximum et au plus vite les émissions de gaz à effet de serre, afin d'éviter un basculement durable dans un nouveau régime climatique dont les conséquences ultimes pour les sociétés et les milieux sont assez largement inconnues. Pour cette raison, l'hydro-électricité connaît un développement à l'échelle mondiale : c'est une technologie simple, rustique et durable ; elle a un excellent bilan carbone (en région tempérée notamment) et matières premières ; elle offre une bonne prévisibilité pour le réseau électrique et dans certains cas (STEP), elle permet de stocker l'énergie produite par d'autres sources renouvelables ou de répondre aux pointes (voir cette synthèse sur l'intérêt énergétique des petits ouvrages). Le choix français de geler une bonne part du développement hydro-électrique au nom de la continuité écologique, voire de détruire les ouvrages déjà en place permettant son exploitation, est en contradiction totale avec la stratégie nationale et européenne de transition écologique et énergétique. Il faut au contraire encourager la croissance de l'énergie hydraulique partout où cela est possible : en rivière, en fleuve et en mer, dans les réseaux d'eau (AEP) et les retenues en place. Bien entendu, certains effets secondaires indésirables de ce développement hydro-électrique sont réels et doivent être minimisés, grâce aux travaux de recherche appliquée sur l'ichtyocompatibilité des prises d'eau et des régimes de débit. Mais il faut garder mesure et remettre les choses à leur place : on ne conçoit pas une politique énergétique de lutte contre le réchauffement climatique en fonction d'une répartition différentielle de poissons sur des tronçons de rivière intéressant essentiellement le loisir de la pêche.

Le bilan carbone des destructions n'est pas calculé, et il est probablement négatif pour le CO2  - La récente expertise collective Irstea-Inra-Onema (Carluer et al 2016, voir ce lien) a montré que le bilan CO2 (dioxyde de carbone) des retenues est généralement meilleur que celui des rivières libres, car la dissolution du gaz et le stockage du carbone y sont plus efficaces. L'inverse est vrai pour le CH4 (méthane), davantage produit dans les retenues et les zones humides. Avis des chercheurs : "pour les retenues installées sur des rivières, il semble que l’émission de CO2 soit plus importante dans la rivière que dans la retenue, l’ordre étant inversé pour CH4". Le CH4 est un gaz à effet de serre nettement plus puissant que le CO2, mais sa durée de vie atmosphérique est nettement moindre (quelques années à décennies pour le méthane, plusieurs siècles pour le CO2). C'est la raison pour laquelle les chercheurs considèrent que le dioxyde de carbone est le premier facteur anthropique du changement climatique, son forçage de long terme laissant tout le temps aux rétroactions (vapeur d'eau, nuages, fonte des glaces) du système Terre pour amplifier le signal initial de réchauffement. En détruisant les retenues pour restaurer des rivières "libres" de moindre largeur et hauteur, on tend plutôt à aggraver le bilan CO2. S'ajoutent à ce bilan négatif la mobilisation d'engins lourds pour les chantiers de destruction et la fréquente nécessité de ré-intervenir sur les rives, car l'évolution des écoulements provoque des effets non désirés sur les usages riverains. Tout cela n'a rien de très écologique, c'est de l'ingénierie qui dépense de l'énergie fossile.

Les ouvrages bien gérés peuvent aider à réguler la température des cours d'eau - On entend souvent dire que les retenues des ouvrages hydrauliques réchauffent l'eau. C'est en partie exact, mais le bilan thermique d'une retenue est bien plus complexe qu'un slogan (voir cette idée reçue). En région tempérée, le réchauffement de l'eau a surtout des enjeux en été, et pour certaines espèces qui recherchent l'eau froide: c'est donc un problème tout relatif, qu'il faut mettre en balance avec les autres effets du réchauffement local sur la biodiversité. Ainsi, et de manière contre-intuitive, une recherche française récente a montré que la hausse des températures au cours des 20 dernières années a été associée à davantage de richesse taxonomique des invertébrés, grâce à une productivité primaire accrue des rivières et autres masses d'eau (Van Looy et al 2016). Surtout, au lieu de les détruire sans discernement, il est possible d'utiliser les ouvrages hydrauliques pour réguler la température, donc atténuer certaines effets du réchauffement. Ainsi, les plus grands ouvrages (ou ceux dont les eaux sont turbides, comme souvent les étangs) gardent une température plus fraîche vers le fond, et le relargage du débit au bon niveau de hauteur permet de compenser un réchauffement de surface. D'autres facteurs, comme la reconstruction de la ripisylve, ont des effets très positifs sur la température et la biodiversité sans pour autant altérer le patrimoine hydraulique. Au cours des décennies et siècles à venir (durée de référence du réchauffement), on a donc tout un panel d'alternatives à tester: vouloir se précipiter à effacer est une pseudo-solution à courte vue.

Les ouvrages permettent de retenir une eau qui devient rare, plus généralement de réguler les niveaux - Il est notoirement difficile de simuler à long terme l'évolution de l'hydrologie, car le cycle de l'eau est complexe et le régime des précipitations répond à des déterminants multi-échelles, depuis les usages locaux de sols jusqu'à la circulation générale océan-atmosphère. Néanmoins, malgré une certaine variabilité des résultats et donc une confiance moyenne, la majorité des modèles climatiques prévoient à l'horizon de ce siècle une augmentation des phénomènes extrêmes (sécheresses, fortes précipitations), une hausse des précipitations hivernales et une baisse des précipitations estivales, une baisse tendancielle des débits sur certaines régions (voir Le climat de la France au XXIe siècle, vol 4, 2014). Dans ce contexte, la préservation des ouvrages hydrauliques paraît une nécessité. Ils permettent en effet de réguler les niveaux d'eau (ce pour quoi ils ont été conçus), de conserver une lame d'eau élevée à l'étiage, de rehausser et d'alimenter les nappes, de servir de refuge au vivant dans les rivières asséchées, de lisser des crues fréquentes… autant de fonctions qui peuvent devenir critiques face au changement climatique. La récréation artificielle de la "rivière libre" signifie au contraire la restauration de la fatalité de l'écoulement naturel, avec obligation pour les riverains de subir les caprices du temps. C'est en contradiction avec 6 millénaires de civilisation hydraulique ayant conduit l'homme à chercher la maîtrise raisonnée des flots. Quant à l'évaporation parfois mise en avant pour déprécier les retenues, elle est relativement négligeable par rapport aux volumes concernés (voir cette idée reçue).

Les espèces de poissons d'eau froide changeront de toute façon de répartition - L'une des premières préoccupations concernant les effets des ouvrages en situation de changement climatique concerne les poissons, qui ne représentent certes que 2% de la biodiversité aquatique (et moins de 0,5% pour les sténothermes), mais qui font l'objet d'une forte attention du lobby pêcheur (voir les travaux de l'Onema, ancien Conseil supérieur de la pêche, Les poissons d'eau douce à l'heure du changement climatique : état des lieux et pistes pour l'adaptation, 2014). Un constat empirique a par exemple été fait en étudiant la faune piscicole: les poissons sensibles à la chaleur ont tendance à monter en altitude, mais leur vitesse de remontée d'environ 13 m / décennie reste inférieure à celle des isothermes du changement climatique (de 40 à 74 m/ décennie), voir Comte et Grenouillet 2013. L'idée est que le rythme étant insuffisant, on peut avoir un risque d'extinction locale et que l'effacement des barrages limiterait ce risque (voir typiquement cette page de l'Onema). Cette conclusion paraît quelque peu hâtive et discutable dans sa généralité. D'abord, les zones aval à espèces eurythermes (zones à brème et à barbeau, tolérance aux variations thermiques) ne sont pas concernées. Ensuite, toutes les études d'écologie et biologie des populations concluent à la contraction future des aires de répartition et des biomasses d'espèces adaptées au froid, y compris lorsqu'il n'y a pas d'obstacles à la migration."Renaturer" une rivière en faveur de salmonidés n'a guère de sens si l'eau de cette rivière est de toute façon appelée à devenir trop chaude pour une truite ou un saumon: le glissement biotypologique est une issue probable, et peu évitable. Enfin, pour les têtes de bassin, les espèces ne parcourent pas des dizaines de kilomètres pour "fuir" le réchauffement: elles évoluent par adaptation locale (sélection différentielle selon les variations thermiques et la résistance à ces variations). Les poissons d'eaux froides persistent et se reproduisent là où ils trouvent des habitats suffisants et à température conforme à leur stratégie de vie. Il est inutile de casser tous les ouvrages pour cela : il suffit de rétablir une connectivité critique à partir de modèles de priorisation sur les bassins versants dont le réchauffement sera insuffisant pour extirper les espèces d'intérêt. Préférer des méthodes intelligentes, informées et ciblées au lieu du choix radical, précipité et stupide de la pelleteuse pour le maximum d'ouvrages.

Remettons donc les idées à l'endroit détruire les ouvrages hydrauliques au nom de la continuité écologique n'est en rien une bonne stratégie de prévention et d'adaptation au changement climatique. On casse un potentiel d'énergie bas-carbone, on se prive d'un outil de régulation des niveaux de la rivière pour faire face aux sécheresses ou aux crues, on remplace une retenue par un lit au bilan CO2 moins bon, on ne sauvera pas pour autant les espèces d'eau froide dont l'habitat aura tendance à se réduire. L'ouvrage hydraulique est aujourd'hui un allié face au changement climatique, il est nettement préférable de le préserver, de l'équiper et de l'adapter à nos nouveaux besoins. Quant aux gestionnaires de rivière, ils doivent cesser de proférer des assertions présentées comme des certitudes alors qu'elles ont une base scientifique fragile, parfois inexistante. Affirmer que l'on peut modéliser avec un haut niveau de confiance la triple évolution des hydrosystèmes fragmentés, de leurs populations biologiques et des régimes pluies-débits sur 50 à 100 ans est une escroquerie intellectuelle qui dessert la cause de l'écologie. On doit agir avec prudence et discernement, et les quelques éléments empiriques ou théoriques dont on dispose plaident plutôt en faveur du maintien des ouvrages hydrauliques.

Illustration: perte de la Seine à Buncey, une année sèche (2015). Le réchauffement climatique devrait accroître le stress hydrique au cours de ce siècle. Il est préférable de conserver les retenues et plans d'eau au lieu de les détruire au nom de modes fondées sur des connaissances scientifiques encore peu robustes et des données de terrain lacunaires.



Exemple dans l'actualité : la destruction d'un barrage sur la Moselotte (Vosges) a mis à sec un canal, au grand dam des agriculteurs, des pêcheurs et des riverains. Voir couvertureFrance Bleue et Vosges Matin, et ci-dessus le Paysan vosgien (cliquer pour agrandir). Le syndicat de rivière a programmé une vingtaine d'opérations de ce type... va-t-on tolérer indéfiniment ces pratiques d'apprentis sorciers, alors qu'il existe des solutions non destructives pour rétablir la connectivité là où elle est nécessaire? Que deviendront les rivières "défragmentées" quand les étiages sévères vont se multiplier, comme nous le promettent les chercheurs? Au regard des milliers d'opérations envisagées en France et de la carence catastrophique de connaissances des hydrosystèmes locaux en appui de cette politique, le moratoire sur les effacements d'ouvrages est une urgente nécessité.

jeudi 28 juillet 2016

Auto-épuration des rivières par suppression des barrages: tromperie en bande organisée

A la demande du Ministère de l'Environnement, une expertise collective a été menée par des scientifiques d’Irstea, en partenariat avec l’Inra et l'Onema, concernant l’impact cumulé des retenues sur le milieu aquatique. Quand on lit son chapitre sur le bilan physico-chimique, un point est marquant : l'absence complète du concept d'auto-épuration, pourtant mis en avant depuis 6 ans par les autorités et gestionnaires en charge de l'eau. Non seulement il n'existe aucune preuve scientifique qu'une suppression des seuils et barrages pourrait être favorable au bilan des nutriments (azote, phosphore) et polluants (comme les pesticides) déversés dans les milieux, mais de nombreux travaux de recherche concluent en sens opposé. En tout état de cause, les chercheurs soulignent la complexité du phénomène et appellent avant tout à procéder à des mesures pour construire des modèles. En lieu et place de cette démarche prudente et rationnelle, nos agences de l'eau et nos syndicats de rivière envoient des pelleteuses pour casser les ouvrages tout en répétant des croyances présentées comme des certitudes et destinées à tromper les citoyens. Cette caricature d'écologie est indigne d'une politique publique: elle doit cesser. 

Nous publions ci-dessous un extrait de synthèse de l'expertise collective Irstea-Inra-Onema sur le rôle physico-chimique des retenues. Les données complètes sont disponibles dans le lien de référence en bas de cet article.

"Une retenue est le lieu de nombreux processus qui font évoluer la qualité physico-chimique de l’eau qui l’alimente. Selon son usage, il peut être aussi important de se focaliser sur cette évolution dans la retenue elle-même que sur les conséquences sur le cours d’eau en aval lorsque l’eau y est restituée.

L’effet d’une retenue sur la qualité de l’eau est d’abord lié à des processus physiques qui caractérisent le passage de conditions d’écoulements rapides (conditions lotiques ; alimentation par le cours d’eau ou par ruissellement de surface) à des conditions lentiques dans la retenue puis éventuellement de nouveau lotiques dans le cours d’eau aval.

Les principaux effets potentiels d’une retenue sur le devenir de C, N, P sont résumés sur la Figure 17, en lien avec les conditions lentiques qui s’établissent au sein de la retenue et qui entraînent :

1. La sédimentation des particules solides, minérales ou organiques, contenues dans l’eau d’alimentation. Le phosphore, les éléments traces métalliques (ETM), des cations, certains pesticides peuvent être partiellement associés à ces particules et se déposent dans le même temps. Les particules organiques, quoique généralement plutôt légères, peuvent se déposer en partie, participant à la séquestration du carbone et apportant des nutriments sous forme organique. A cette MO allochtone s’ajoutent généralement de la MO autochtone issue de la production primaire, et de la MO du sol et de la végétation submergés. Toutes ces substances chimiques sont alors stockées dans la retenue sur un plus ou moins long terme. Cependant, si les conditions deviennent anoxiques à la base de la colonne d’eau, les, les transformations biogéochimiques en milieu réducteur peuvent entraîner leur mobilisation sous forme gazeuse ou dissoute dans la colonne d’eau (CH , NH +, PO 3- ...) ;

2. Une possible stratification thermique de la colonne d’eau, dans les retenues profondes, du fait du rééquilibrage de la température de l’eau avec la température de l’air (réchauffement) dans les couches de surface en été. Dans les retenues peu profondes, toujours en été, la température de l’eau stockée dans la retenue et non renouvelée a tendance à augmenter, ce qui diminue la solubilité de l’oxygène dans l’eau. Outre l’apparition de conditions réductrices dans le fond de la retenue et ses conséquences citées ci- dessus, l’anoxie favorise la dénitrification, c’est-à-dire la transformation du nitrate en gaz, inerte comme N2 ou à effet de serre comme N2O. La stratification contrôle les gradients d’oxygène, mais aussi les phénomènes de diffusion, mélange et sédimentation des éléments dissous et particulaires d’une couche à l’autre ainsi que la production primaire et la minéralisation de MO dans la colonne d’eau (Figure 33 en annexe III) ; on observe ainsi une zonation verticale des éléments dissous, fortement liée aux phénomènes de stratification thermique et de gradient d’oxygène. Deux types de structures trophiques se construisent sur ces bases, à partir des décomposeurs bactériens ou fongiques, ou à partir des producteurs primaires. Les éléments nutritifs tels que N et P et les contaminants suivent les phénomènes de diffusion (fraction dissoute) ou de sédimentation (fraction particulaire).

3. Un développement éventuel de la production primaire (phytoplancton, végétation). Il se produit surtout au printemps et en été, lorsque les nutriments sont abondants et dans les couches superficielles de la colonne d’eau où les conditions de température et de lumière lui sont favorables. Si PO 3- est abondant, cela peut conduire à une eutrophisation. En consommant ces nutriments, la production primaire entraîne une diminution des concentrations de NO - et PO 3-. L’eutrophisation entraîne une augmentation de biomasse et donc de MO à l’automne, dont la minéralisation va accentuer la consommation d’oxygène et les conditions réductrices dans la zone benthique. Les ions PO 3- ainsi libérés vont à leur tour entretenir l’eutrophisation. Le déficit de NO- peut être pallié par la fixation de N. Cette situation favorise les Cyanobactéries ayant cette possibilité.



Principaux effets potentiels d’une retenue sur le devenir de C, N, P à l’intérieur de la retenue. Les couleurs utilisées distinguent les compartiments, flux et processus concernant la phase dissoute dans la colonne d’eau (en bleu), la phase solide sédimentaire (en marron), la phase gazeuse (en rouge) et la biomasse (en vert). Ces effets potentiels sont associés aux conditions lentiques et n’intègrent pas les effets lors de changement de régime hydraulique (crue, brassage lié au vent, curage, vidange...).

L’établissement des conditions lentiques dans la retenue, ou de façon générale les conditions hydrodynamiques dans la retenue, constitue(nt) l’une des clés de fonctionnement des retenues vis-à-vis de la qualité de l’eau. Un faible renouvellement de l’eau augmente le temps de résidence, ce qui peut favoriser la sédimentation et le stockage de certains éléments, la stratification thermique et l’anoxie, et donc certaines transformations biogéochimiques dans la colonne d’eau. En retour, en cas de flux entrants importants et rapides, ou sous l’effet du vent, le brassage de la colonne d’eau et la remise en suspension des particules sédimentées peut entraîner un renouveau de mobilité des espèces chimiques associées aux particules ou un relargage de certains composés initialement concentrés dans le milieu interstitiel benthique. Le brassage peut aussi avoir un effet sur l’homogénéisation de la colonne d’eau réduisant la stratification thermique et les gradients d’oxygène, ainsi que sur la diffusion des éléments dans la colonne d’eau et à l’interface avec l’atmosphère. Enfin le phénomène de marnage, par définition très accentué dans les retenues, induisant des alternances de conditions anoxiques et oxiques en bordure de retenue, favorise encore plus la mobilisation des espèces chimiques associées aux sédiments (P, ETM, pesticides...).

Si l’établissement de conditions lentiques conditionne l’essentiel des processus d’évolution de la qualité physico- chimique de l’eau dans la retenue, l’expression de ces processus et leur intensité vont dépendre aussi de nombreux déterminants : à la fois les caractéristiques morphologiques propres de la retenue (taille, forme, profondeur), son environnement (occupation du sol, hydrologie) dans le bassin versant et son alimentation qui déterminent les flux entrants, sa gestion qui détermine les flux sortants, le climat régional et local et sa variabilité temporelle, sans oublier l’occupation du sol ennoyé et le temps écoulé depuis la submersion. Tous ces déterminants jouent à des degrés divers selon les variables physico-chimiques et les processus de transfert et de transformation associés.

Les conditions hydrodynamiques peuvent présenter une forte variabilité à toutes les échelles de temps, en particulier de la saison. Les inversions de température d’une saison à l’autre peuvent entraîner la stratification de la colonne d’eau, notamment dans les retenues profondes. La saison est aussi déterminante dans le développement cyclique de la production primaire (effet température, lumière) consommant des nutriments au printemps et en été, sénescente en automne, stockée sous forme de MO ou éventuellement décomposée, permettant le relargage de nutriments. L’oxygène dissous peut être affecté à la fois par la respiration, la photosynthèse et la décomposition de cette production primaire. Les phénomènes de diffusion, mélange et de sédimentation des éléments dissous et particulaires d’une couche à l’autre dans la colonne d’eau dépendent des phénomènes de stratification thermique et donc de l’emplacement de la thermocline et du métalimnion qui varient saisonnièrement.

Un déterminant de l’évolution de plusieurs des variables physico-chimiques évoqués ci dessus, largement cité dans la bibliographie, est le temps de résidence de l’eau dans la retenue. Celui-ci varie toutefois d’une façon complexe, tant dans le temps que spatialement dans la retenue, et les indicateurs habituellement utilisés (rapport du volume de la retenue sur le flux d’eau entrant, ou rapport de l’aire de la retenue sur l’aire du bassin versant drainé), s’ils donnent un ordre de grandeur utile, ne peuvent rendre compte de cette variabilité. Tous ces effets qui se manifestent dans la retenue ont aussi des conséquences sur la qualité de l’eau dans le réseau hydrographique aval, dans le cas où la retenue est située sur un cours d’eau ou y est connectée temporairement ou de façon permanente. Les conséquences dans le cours d’eau récepteur sont fonction de l’importance relative des flux sortants par rapport aux flux dans le cours d’eau, et restent plus ou moins visibles de manière significative vers l’aval en fonction des nouveaux flux entrants. Pour certaines variables (température, oxygène dissous) l’effet de la retenue peut s’annuler au-delà d’une certaine distance dans le cours d’eau, en lien notamment avec les turbulences engendrées par le retour aux conditions lotiques, et au fur et à mesure que les nouveaux apports au cours d’eau se mélangent aux flux sortants. Pour d’autres éléments (N, P...) l’effet de la retenue reste plus ou moins visible selon l’importance relative des flux sortants par rapport aux flux dans le cours d’eau et à la présence d’affluents.

(…)

Besoins et lacunes de recherches
Au niveau scientifique, les verrous identifiés concernent d’abord l’échelle d’une retenue, avec la quantification des nombreux processus actifs dans cette retenue. Des observations et des données à l’échelle locale sont encore nécessaires, avec des suivis suffisamment denses aux niveaux spatial et temporel. Leur objectif doit être clairement d’alimenter des modèles biogéochimiques adaptés aux retenues, dont le développement doit se poursuivre. Certains phénomènes spécifiquement développés dans les retenues ont besoin d’être quantifiés et mieux compris : l’effet initial dû à l’inondation de matières organiques et sa durabilité, l’effet du marnage.Par ailleurs les données existantes ou à acquérir à l’échelle d’une retenue pourraient être mobilisées dans une méta-analyse pour bien identifier les nombreux facteurs d’influence et permettre d’envisager une transposition des résultats acquis.

A l’échelle globale du bassin versant, d’autres modèles doivent être développés, permettant de traiter l’effet cumulé. La position des retenues dans le bassin jouant un rôle important (apports différents par l’aire drainée et interactions entre retenues liées à leur position relative sur les chemins hydrologiques), les modèles devront soit être distribués spatialement, soit faire ressortir une typologie [patterns spatiaux – effets physico-chimiques], qui reste à élaborer. Les possibilités de tracer des effets globaux de retenues grâce aux traçages isotopique de C et N mais peut être aussi de PO4 (développement en cours) mériteraient d’être évalués."

Ministère, Agences de l'eau, syndicats, bureaux d'étude : flagrant délit de généralisation abusive et tromperie du public
Le principal enseignement de cette étude est que l'effet d'une retenue créée par un seuil ou un barrage, a fortiori d'un cumul de retenues, est un processus complexe vis-à-vis duquel la connaissance est encore lacunaire. Beaucoup d'études montrent par exemple une réduction de l'azote et du phosphore à l'aval des retenues, mais le bilan dépend de diverses conditions physiques et chimiques. Le premier besoin du gestionnaire, c'est donc de faire des mesures et de construire des modèles afin de vérifier dans quelle proportion une retenue ou une succession de retenues d'eau va contribuer ou non à épurer la rivière concernée par un programme de gestion. Il se peut très bien que sur un bassin soumis à des pollutions agricoles, industrielles ou domestiques, la capacité de rétention, sédimentation et élimination des plans d'eau créés par les seuils et barrages joue un rôle globalement bénéfique aux milieux amont et aval de chaque site. Pour le savoir, il faut l'étudier.

Or, voici ce qu'ont écrit depuis quelques années les autorités en charge de l'eau (avec un focus sur un syndicat et un bureau d'études de notre région) :

Direction de l'eau et de la biodiversité, Ministère de l'environnementCirculaire de 2013: "La transformation des anciens moulins à roue fonctionnant selon le besoin, et parfois avec des seuils sommaires en fascines peu étanches, en usines de production continue d’électricité avec turbines a également aggravé fortement les impacts de ces ouvrages en impliquant une dérivation constante de l’eau, des mortalités dans les turbines, une réduction des possibilités de transit par les seuils de prise d’eau et les organes d’évacuation et une étanchéité plus grande des ouvrages. Ces évolutions ont aggravé l’accumulation des sédiments fins qui jouent un rôle négatif en matière d’auto-épuration."

Onema et France nature environnementRestauration de la continuité écologique des cours d’eau et des milieux aquatiques. Idées reçues et préjugés (sic), 2014 : "Un seuil engendre la présence d’un plan d’eau en amont de l’ouvrage provoquant de ce fait un écoulement plus lent, une augmentation de la profondeur et un faible renouvellement des eaux. Le phénomène d’auto-épuration, qui désigne la capacité d’un cours d’eau à éliminer les substances nocives pour la vie aquatique, ne pourra plus se faire naturellement comme c’est le cas sur un cours d’eau non entravé."

Agence de l'eauSDAGE Seine-Normandie 2016-2021, Orientation 19 : "La continuité écologique pour les milieux aquatiques se définit par la circulation des espèces et le bon déroulement du transport des sédiments. Elle a une dimension amont-aval, impactée par les ouvrages transversaux comme les seuils et barrages, et une dimension latérale, impactée par les ouvrages longitudinaux comme les digues et les protections de berges. Elle permet (…) 5° l'auto-épuration"

Sirtava - Syndicat de l'ArmançonSAGE de l'Armançon, 2013 : "20% des cours d’eau du bassin possèdent une forte capacité d’auto-épuration (en Côte d’Or comme dans l’Yonne). Ceux-ci bénéficient de débits permanents et sont en bon état physique et écologique (ripisylve continue et diversifiée, dynamique fluviale et continuité écologique préservées, faciès d’écoulement diversifiés…). En Côte d’Or, l’auto-épuration des cours d’eau est majoritairement (à 57%) moyenne. Dans l’Yonne, 43% des cours d’eau (une majorité d’affluents) ont une mauvaise capacité d’auto-épuration. La faiblesse des débits, la rupture de la continuité écologique, les recalibrages, les mises en biefs, la ripisylve peu diversifiée voire quasi-absente sont en cause." (Nota : de manière assez extraordinaire, aucun bilan physico-chimique n'a permis d'asseoir ces chiffres. On évalue au doigt mouillé, pas par des mesures in situ.)

SEGI, rapport de projet 2015 sur l'effacement de l'ouvrage de Perrigny-sur-Armançon : "l’effacement sera favorable à la diversification de faciès d’écoulement, au développement de nouveaux cortèges floristiques en marge du lit mineur. De nouveaux habitats se créeront naturellement, qui en association avec des vitesses d’écoulement plus importantes, participeront dans leur ensemble à améliorer les processus d’auto-épuration, l’oxygénation, et potentiellement la régulation thermique de l’eau."

Le contraste est saisissant :

  • d'un côté, des chercheurs soulignent la faiblesse scientifique des connaissances, la complexité des phénomènes concernés, le rôle favorable à certaines échelles de temps et espace pour certains types de contaminants des milieux aquatiques, la nécessité de mener des campagnes de mesures ; 
  • d'un autre côté, des autorités et des gestionnaires assènent comme une évidence acquise le rôle négatif de seuils et barrages dans l'élimination des nutriments ou des polluants, sortant le concept d'auto-épuration de leur chapeau et estimant tout à fait normal de produire des assertions sans preuve dans une communication publique ;
  • le même jargon relevant d'une idéologie administrative et non de la connaissance scientifique, destiné à impressionner le citoyen ou l'élu peu informé de ces questions, se répète du sommet à la base, c'est-à-dire du bureau des milieux aquatiques (DEB) du Ministère de l'Environnement jusqu'aux rapports des bureaux d'études mandatés par les syndicats avec l'argent des Agences de l'eau. 

Tant que nous ne sortirons pas de ce régime dogmatique de croyance et de ces pratiques manipulatrices de communication, les institutions concernée n'auront aucune légitimité dans la mise en oeuvre de la réforme de continuité écologique. Et tant que les effacements d'ouvrages ne seront pas précédés par un diagnostic complet et non biaisé, ils devront être combattus.

Référence : Carluer N. et al, Irstea-Inra-Onema (2016), Expertise scientifique collective sur l’impact cumulé des retenues, rapport 325 pp + annexes, voir chapitre V Physico-chimie.

Aucun commentaire:

Enregistrer un commentaire